Search results

Search for "Brownian motion" in Full Text gives 38 result(s) in Beilstein Journal of Nanotechnology.

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • are: a) Brownian motion, b) liquid–liquid layering, c) particle–liquid layering, and d) thermal transfer [1][13]. Initially, it was suggested by several studies that the increased conductivity of nanofluids was due to the Brownian motion of nanoparticles in the fluid [14][15]. It was also proposed
  • that a local micro-convection is induced in the base fluid due to the Brownian motion of nanoparticles, which increases both mixing and heat transport within the nanofluid [16][17]. Later, several studies demonstrated that interactions between liquid atoms and nanoparticles (i.e., a liquid adsorption
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • -Brownian motion of the main chain due to the flexible nature of its constituent molecules. It is also observed from the figures that the decreasing pattern of the dielectric constant is more prominent toward lower frequencies as well as in the higher temperature domain. The decreasing pattern of the
PDF
Album
Full Research Paper
Published 18 Nov 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • µm in diameter that can be suspended in a fluid via Brownian motion [13]) is, therefore, expected to adhere to a similar natural progression such that the total energy of the system is minimized. When analyzing colloidal systems, however, both attractive and repulsive forces must be taken into
PDF
Album
Full Research Paper
Published 06 May 2021

Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet

  • Ganji Narender,
  • Kamatam Govardhan and
  • Gobburu Sreedhar Sarma

Beilstein J. Nanotechnol. 2020, 11, 1303–1315, doi:10.3762/bjnano.11.114

Graphical Abstract
  • Brownian motion and thermophoretic properties. Due to these features, nanoparticles are widely used in catalysis, imaging, energy-based research, microelectronics, and in other applications in the medical and environmental fields. These nanoparticles are composed of metals and nonmetals and are frequently
  • ] studied the impact of Brownian motion and thermophoresis diffusion on Casson nanofluid boundary layer flow over a nonlinear inclined stretching sheet. An unsteady flow of a Casson fluid along a nonlinear stretching surface was studied by Ullah et al. [30]. A Casson fluid over a non-isothermal cylinder
  • the surface of the fluid flow. The Brownian motion and thermophoretic effects have been considered as well as the convective surface conditions. A convective heating process is applied to regulate the sheet temperature Tw. The nanoparticle concentration, Cw, is assumed to be constant. When y values
PDF
Album
Full Research Paper
Published 02 Sep 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • Figure 7C), which is only slightly larger than the minimum diameter of the magnetite particles (6.5 nm) [28], which is necessary for the magnetic force to overcome the Brownian motion of the particles. Therefore, the 8 nm primary nanocrysals are able to form chain-like structures upon the action of an
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • electrokinetic (ABEL) trap [10][11][12] was invented. In the ABEL trap, the Brownian motion of a particle is optically monitored, and then a feedback electric field is applied so that the resulting electrokinetic forces induce a drift that exactly cancels the Brownian motion. This can also be achieved by moving
  • directed away from the hot spot. By employing a feedback mechanism, which can dynamically relocate the position of the hot spot, it is possible to oppose random thermal fluctuations and therefore limit the Brownian motion of the particle. As experimentally and numerically demonstrated, thermophoretic
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Effect of magnetic field, heat generation and absorption on nanofluid flow over a nonlinear stretching sheet

  • Santoshi Misra and
  • Govardhan Kamatam

Beilstein J. Nanotechnol. 2020, 11, 976–990, doi:10.3762/bjnano.11.82

Graphical Abstract
  • –corrector method is employed to solve the equations. The impact of the dimensionless parameters, including the Brownian motion, thermophoresis, magnetic field, heat generation and absorption parameters, on the velocity, temperature and nanoparticle concentration of fluid flow are analysed systematically
  • . Keywords: Brownian motion; heat generation and absorption; magnetic field; nanofluid; thermophoresis; Introduction The study of magnetohydrodynamic problems, such as nanofluid flow over a permeable stretching sheet, has recently become relevant due to potential applications in various fields of science
  • thermal conductivity and convective heat transfer performance of base fluids such as water, ethylene, glycol, etc. This takes place due to the intense and rigorous distribution of nanoparticle Brownian motion within the base fluid, thus enhancing the uniformity, conductance and properties which have paved
PDF
Album
Full Research Paper
Published 02 Jul 2020

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • -waveguide and a 16-waveguide device, using 1 and 3 μm polystyrene beads. Study of the confined Brownian motion of the trapped beads yields experimental values of the normalized trap stiffness for the in-plane directions. The stiffness values for the 16-waveguide device are comparable to those of tightly
  • waveguides. Keywords: Brownian motion; integrated optics devices; lab-on-a-chip; optical trapping; nanofabrication; Raman spectroscopy; ridge waveguides; Introduction Photonic lab-on-a-chip (LOC) techniques strongly attract attention for the manipulation and measurement of biological particles such as
  • . This hopping is visible by eye in the camera image and can be seen for a 3 μm bead in the 2-waveguide device in Supporting Information File 4. With increasing Pfib the local traps becomes stronger, resulting in stronger confinement of the Brownian motion of a bead in the local trapping potential. For
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • and are more likely to reach the target diseased site. The lower binding affinity of the smaller NPs could be due to the Brownian motion of the particles and the influence of other surrounding particles and fluid. However, it is important to take a closer look at the correlation between mass loss of
  • area had less tendency to deposit or bind at the lower concentrations. Therefore, the NP flow was likely dominated by the velocity of the surrounding fluid and Brownian motion at these concentrations, which prevented the deposition of the lighter, small-sized NPs [18][47][48]. In comparison, the larger
  • phenomenon suggested a slightly lower influence of the surrounding fluid and Brownian motion on the NP flow in this concentration range. However, the quantity of NPs lost due to binding or deposition showed a decreasing quadratic correlation with NP size at the highest inlet mass concentration (5.24 g Fe
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
PDF
Album
Review
Published 04 Nov 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • values. NTA analysis of the Brownian motion of the Au-CPMV samples on a particle-by-particle basis and the subsequent employment of the Stokes–Einstein equation allows for the derivation of NP size and concentration. Au-CPMV with a concentration of ca. 0.5 mg/mL gold contains roughly 109 to 1010 Au-CPMV
PDF
Album
Full Research Paper
Published 07 Oct 2019

Janus-micromotor-based on–off luminescence sensor for active TNT detection

  • Ye Yuan,
  • Changyong Gao,
  • Daolin Wang,
  • Chang Zhou,
  • Baohua Zhu and
  • Qiang He

Beilstein J. Nanotechnol. 2019, 10, 1324–1331, doi:10.3762/bjnano.10.131

Graphical Abstract
  • Brownian motion, micro/nanomotors can actively swim in solutions by converting energy from the environment (e.g., chemical fuel, light, acoustic or magnetic) into mechanical movement [28][29][30][31][32][33][34][35][36][37]. The active motion of micro/nanomotors has been proposed to improve reaction yields
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • example, in [25] the Debye theory of polar relaxation was applied in the case of MNPs undergoing only Brownian motion. This was further extended to a first order modified mean field theory leading to a relatively simple expression of the out-of-phase component of the susceptibility in ferrofluids with
PDF
Album
Full Research Paper
Published 24 Jun 2019

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • @PHPMA (Dh = 165 nm; PI = 0.22) was substantially larger than that of γ-Fe2O3 (90 nm). This is due to the fact that the hydrodynamic diameter gives information of the γ-Fe2O3 core along with coating material and the solvent layer attached to the particles, which undergo Brownian motion. Moreover
PDF
Album
Full Research Paper
Published 25 Sep 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • (trapping force), scattering force, coating force, and drag force (Figure 1) [21]. Nanoparticles are either trapped in the evanescent field and reside in a potential well or escape the potential well via Brownian motion due to inadequate trapping force [22]. The potential well is the sum of all forces, and
PDF
Album
Full Research Paper
Published 18 Apr 2018

Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

  • Nagamalai Vasimalai,
  • Vânia Vilas-Boas,
  • Juan Gallo,
  • María de Fátima Cerqueira,
  • Mario Menéndez-Miranda,
  • José Manuel Costa-Fernández,
  • Lorena Diéguez,
  • Begoña Espiña and
  • María Teresa Fernández-Argüelles

Beilstein J. Nanotechnol. 2018, 9, 530–544, doi:10.3762/bjnano.9.51

Graphical Abstract
  • environmental hazard concerns [2]. Furthermore, due to their ultra-small size, the Brownian motion provides enough energy to prevent nanoparticle aggregation, giving rise to an excellent solubility and stability in aqueous media [3][4]. Their excitation wavelength-dependent emission, their environmental
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2018

Photobleaching of YOYO-1 in super-resolution single DNA fluorescence imaging

  • Joseph R. Pyle and
  • Jixin Chen

Beilstein J. Nanotechnol. 2017, 8, 2296–2306, doi:10.3762/bjnano.8.229

Graphical Abstract
  • saturated with YOYO-1. The theoretical YOYO-1 binding rate can be estimated with Einstein’s Brownian motion and Fick’s second law: the YOYO-1 molecules diffuse in the solution where the location probability is a Gaussian distribution after an evolution time Δt (Figure 9), where p(z, Δt) is the probability
PDF
Album
Supp Info
Correction
Full Research Paper
Published 02 Nov 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • of a nanoplate. The study explains, hereto unaddressed, the temporal evolution of complex magnetic nanostructures. These ferromagnetic nanostructures represent an interesting combination of shape anisotropy and magnetic characteristics. Keywords: Brownian motion; cobalt nanoplates; electron
  • and hence the regime is dominated by stochastic aggregation due to Brownian motion. The stochastic aggregation results in the formation of nanoclusters with larger size than at “zero time” possessing an increased magnetic moment. Figure 3d gives an impression of how the edge (thickness) and the
  • micrograph, showing the spread of small nanoparticles with linear aggregation; (g) Brownian-motion controlled random aggregation of nanoparticles; (h) edge-to-edge collision of small nano-discs in the transition regime; (i) FEGSEM micrograph showing edge-to-edge aggregation after 15–30 min; (j) FEGSEM
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

The difference in the thermal conductivity of nanofluids measured by different methods and its rationalization

  • Aparna Zagabathuni,
  • Sudipto Ghosh and
  • Shyamal Kumar Pabi

Beilstein J. Nanotechnol. 2016, 7, 2037–2044, doi:10.3762/bjnano.7.194

Graphical Abstract
  • and THWM. Collision-Mediated Model Ghosh et al. [16] proposed a new mechanism for the enhancement of thermal conductivity in nanofluids. According to them, nanoparticles within nanofluids undergo Brownian motion and frequently collide with the heat source. During these collisions, rapid heat exchange
  • recognizes that nanoparticles in a fluid undergo Brownian movement and frequently collide with the heat source. The recurrence of collision depends on parameters of Brownian motion such as the temperature of the fluid, the size of the nanoparticles and the viscosity of the fluid. Depending on the temperature
  • nanoparticle with time, has been calculated by considering the following: During Brownian motion, heat is exchanged when the nanoparticle comes in contact with the heat source. Exchange of heat between the nanoparticles by collision has not been considered, because of the small volume fraction of nanoparticles
PDF
Album
Full Research Paper
Published 20 Dec 2016

Active multi-point microrheology of cytoskeletal networks

  • Tobias Paust,
  • Tobias Neckernuss,
  • Lina Katinka Mertens,
  • Ines Martin,
  • Michael Beil,
  • Paul Walther,
  • Thomas Schimmel and
  • Othmar Marti

Beilstein J. Nanotechnol. 2016, 7, 484–491, doi:10.3762/bjnano.7.42

Graphical Abstract
  • the direction of excitation because the Brownian motion was small compared to the oscillations. The diagonal oscillations (45°, 135°) led to amplitudes of . Hence, the measured values were in accordance with theory. The amplitude in the non-excited direction always resulted in minor values. This shows
  • + this decrease is very small, at a concentration of 1 mM Mg2+ only one tenth of the excitation amplitude deforms the network. At a distance of 3 µm the response motion is reduced because of the decreased excitation and the density of the network. Furthermore, the Brownian motion becomes larger than the
  • was not recorded. Only the Brownian motion and surrounding noise was measured. Conclusion With the novel active method new insights into the dynamics of cytoskeletal networks can be gained. Properties such as the response amplitude propagation through the network, the isotropy of the network or the
PDF
Album
Full Research Paper
Published 24 Mar 2016

Molecular machines operating on the nanoscale: from classical to quantum

  • Igor Goychuk

Beilstein J. Nanotechnol. 2016, 7, 328–350, doi:10.3762/bjnano.7.31

Graphical Abstract
  • a viscous friction coefficient denoted as η. When the corresponding frictional energy losses are no longer compensated for by an energy supply, the motion will eventually stop. However, this does not happen in microworld for micro- or nanosized particles. Their stochastic Brownian motion can persist
  • picture to rationalize this fundamental feature of Brownian motion. We start with some generalities that can be easily understood within a standard dynamical approach to Brownian motion that can be traced back to pioneering contributions by Bogolyubov [11], Ford, Kac and Mazur [12][13], and others
  • with masses mi, coordinates qi, and momenta pi. This coupling is of the form , with spring constants κi. This is a standard mechanistic model of nonlinear, classical Brownian motion known within quantum dynamics as the Caldeira–Leggett model [14] upon modification of the coupling term or making a
PDF
Album
Review
Published 03 Mar 2016

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

  • Michael G. Ruppert and
  • S. O. Reza Moheimani

Beilstein J. Nanotechnol. 2016, 7, 284–295, doi:10.3762/bjnano.7.26

Graphical Abstract
  • deflection noise density acquired from thermally induced vibrations. However, this method is only suitable for the fundamental mode as higher eigenmode deflections due to Brownian motion decrease rapidly [34]. For the cantilever used in this work, the thermally induced vibration amplitude corresponding to
PDF
Album
Full Research Paper
Published 24 Feb 2016

Kelvin probe force microscopy for local characterisation of active nanoelectronic devices

  • Tino Wagner,
  • Hannes Beyer,
  • Patrick Reissner,
  • Philipp Mensch,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2015, 6, 2193–2206, doi:10.3762/bjnano.6.225

Graphical Abstract
  • power spectral densities V and W, respectively. Hence, Ulcpd follows a Wiener process or Brownian motion [37]. For a derivation of the continuous-time Kalman(-Bucy) filter [41], see Supporting Information File 1. In discrete time, the Kalman filter is similarly found from a discrete-time state-space
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2015

Self-assembly mechanism of Ni nanowires prepared with an external magnetic field

  • Xiaoyu Li,
  • Hu Wang,
  • Kenan Xie,
  • Qin Long,
  • Xuefei Lai and
  • Li Liao

Beilstein J. Nanotechnol. 2015, 6, 2123–2128, doi:10.3762/bjnano.6.217

Graphical Abstract
  • , corresponding to Figure 5a and Figure 5b, respectively, can be called the first stage. Nanoparticles are mainly affected by Brownian motion and electrostatic repulsive force in this stage because the magnetic interaction between nanoparticles is too weak to overcome the molecular resistance of the solvent since
  • as magnetic interaction between magnetic dipoles, van der Walls forces, the molecular resistance of the solvent, Brownian motion and electrostatic repulsive forces. Therefore, the critical size of self-assembly is closely related to the magnetic field strength and temperature of the reaction system
PDF
Album
Full Research Paper
Published 09 Nov 2015
Other Beilstein-Institut Open Science Activities